\(\int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx\) [253]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 321 \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\frac {2 \cot ^3(c+d x)}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {2 \cot ^3(c+d x) \csc (c+d x) \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sqrt {\sin (2 c+2 d x)}}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}-\frac {\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \]

[Out]

2*cot(d*x+c)^3/a^2/d/(e*cot(d*x+c))^(7/2)+2*cot(d*x+c)^3*csc(d*x+c)*(sin(c+1/4*Pi+d*x)^2)^(1/2)/sin(c+1/4*Pi+d
*x)*EllipticF(cos(c+1/4*Pi+d*x),2^(1/2))*sin(2*d*x+2*c)^(1/2)/a^2/d/(e*cot(d*x+c))^(7/2)+1/2*arctan(-1+2^(1/2)
*tan(d*x+c)^(1/2))/a^2/d/(e*cot(d*x+c))^(7/2)*2^(1/2)/tan(d*x+c)^(7/2)+1/2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/
a^2/d/(e*cot(d*x+c))^(7/2)*2^(1/2)/tan(d*x+c)^(7/2)-1/4*ln(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/a^2/d/(e*cot
(d*x+c))^(7/2)*2^(1/2)/tan(d*x+c)^(7/2)+1/4*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/a^2/d/(e*cot(d*x+c))^(7/
2)*2^(1/2)/tan(d*x+c)^(7/2)

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.00, number of steps used = 20, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.640, Rules used = {3985, 3973, 3971, 3557, 335, 217, 1179, 642, 1176, 631, 210, 2694, 2653, 2720, 2687, 30} \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} a^2 d \tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}+\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} a^2 d \tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}+\frac {2 \cot ^3(c+d x)}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} a^2 d \tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}+\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} a^2 d \tan ^{\frac {7}{2}}(c+d x) (e \cot (c+d x))^{7/2}}-\frac {2 \sqrt {\sin (2 c+2 d x)} \cot ^3(c+d x) \csc (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{a^2 d (e \cot (c+d x))^{7/2}} \]

[In]

Int[1/((e*Cot[c + d*x])^(7/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

(2*Cot[c + d*x]^3)/(a^2*d*(e*Cot[c + d*x])^(7/2)) - (2*Cot[c + d*x]^3*Csc[c + d*x]*EllipticF[c - Pi/4 + d*x, 2
]*Sqrt[Sin[2*c + 2*d*x]])/(a^2*d*(e*Cot[c + d*x])^(7/2)) - ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]]/(Sqrt[2]*a^2
*d*(e*Cot[c + d*x])^(7/2)*Tan[c + d*x]^(7/2)) + ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]/(Sqrt[2]*a^2*d*(e*Cot[c
 + d*x])^(7/2)*Tan[c + d*x]^(7/2)) - Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2]*a^2*d*(e*Co
t[c + d*x])^(7/2)*Tan[c + d*x]^(7/2)) + Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/(2*Sqrt[2]*a^2*d*(e
*Cot[c + d*x])^(7/2)*Tan[c + d*x]^(7/2))

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 2653

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2694

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[e + f*x]]/(Sqrt[Co
s[e + f*x]]*Sqrt[b*Tan[e + f*x]]), Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f}, x
]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3557

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 3971

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandI
ntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]

Rule 3973

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^(2*n
)/e^(2*n), Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && E
qQ[a^2 - b^2, 0] && ILtQ[n, 0]

Rule 3985

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*((a_) + (b_.)*sec[(c_.) + (d_.)*(x_)])^(n_.), x_Symbol] :> Dist[(e*Co
t[c + d*x])^m*Tan[c + d*x]^m, Int[(a + b*Sec[c + d*x])^n/Tan[c + d*x]^m, x], x] /; FreeQ[{a, b, c, d, e, m, n}
, x] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {\tan ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx}{(e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ & = \frac {\int \frac {(-a+a \sec (c+d x))^2}{\sqrt {\tan (c+d x)}} \, dx}{a^4 (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ & = \frac {\int \left (\frac {a^2}{\sqrt {\tan (c+d x)}}-\frac {2 a^2 \sec (c+d x)}{\sqrt {\tan (c+d x)}}+\frac {a^2 \sec ^2(c+d x)}{\sqrt {\tan (c+d x)}}\right ) \, dx}{a^4 (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ & = \frac {\int \frac {1}{\sqrt {\tan (c+d x)}} \, dx}{a^2 (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\int \frac {\sec ^2(c+d x)}{\sqrt {\tan (c+d x)}} \, dx}{a^2 (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}-\frac {2 \int \frac {\sec (c+d x)}{\sqrt {\tan (c+d x)}} \, dx}{a^2 (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ & = -\frac {\left (2 \cos ^{\frac {7}{2}}(c+d x)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\sin (c+d x)}} \, dx}{a^2 (e \cot (c+d x))^{7/2} \sin ^{\frac {7}{2}}(c+d x)}+\frac {\text {Subst}\left (\int \frac {1}{\sqrt {x}} \, dx,x,\tan (c+d x)\right )}{a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\text {Subst}\left (\int \frac {1}{\sqrt {x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ & = \frac {2 \cot ^3(c+d x)}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {\left (2 \cot ^3(c+d x) \csc (c+d x) \sqrt {\sin (2 c+2 d x)}\right ) \int \frac {1}{\sqrt {\sin (2 c+2 d x)}} \, dx}{a^2 (e \cot (c+d x))^{7/2}}+\frac {2 \text {Subst}\left (\int \frac {1}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ & = \frac {2 \cot ^3(c+d x)}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {2 \cot ^3(c+d x) \csc (c+d x) \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sqrt {\sin (2 c+2 d x)}}{a^2 d (e \cot (c+d x))^{7/2}}+\frac {\text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ & = \frac {2 \cot ^3(c+d x)}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {2 \cot ^3(c+d x) \csc (c+d x) \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sqrt {\sin (2 c+2 d x)}}{a^2 d (e \cot (c+d x))^{7/2}}+\frac {\text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}-\frac {\text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}-\frac {\text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ & = \frac {2 \cot ^3(c+d x)}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {2 \cot ^3(c+d x) \csc (c+d x) \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sqrt {\sin (2 c+2 d x)}}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ & = \frac {2 \cot ^3(c+d x)}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {2 \cot ^3(c+d x) \csc (c+d x) \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sqrt {\sin (2 c+2 d x)}}{a^2 d (e \cot (c+d x))^{7/2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}-\frac {\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)}+\frac {\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} a^2 d (e \cot (c+d x))^{7/2} \tan ^{\frac {7}{2}}(c+d x)} \\ \end{align*}

Mathematica [F]

\[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx \]

[In]

Integrate[1/((e*Cot[c + d*x])^(7/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

Integrate[1/((e*Cot[c + d*x])^(7/2)*(a + a*Sec[c + d*x])^2), x]

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 10.28 (sec) , antiderivative size = 961, normalized size of antiderivative = 2.99

method result size
default \(\text {Expression too large to display}\) \(961\)

[In]

int(1/(e*cot(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/2/a^2/d*2^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^4*(I*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*co
t(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2)
)*((1-cos(d*x+c))*(-cot(d*x+c)+csc(d*x+c)-1)*(csc(d*x+c)-cot(d*x+c)+1)*csc(d*x+c))^(1/2)-I*(csc(d*x+c)-cot(d*x
+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+
c)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*((1-cos(d*x+c))*(-cot(d*x+c)+csc(d*x+c)-1)*(csc(d*x+c)-cot(d*x+c)+1)*csc(d*
x+c))^(1/2)-6*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2
)*EllipticF((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2*2^(1/2))*((1-cos(d*x+c))*(-cot(d*x+c)+csc(d*x+c)-1)*(csc(d*x+c
)-cot(d*x+c)+1)*csc(d*x+c))^(1/2)+(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x
+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*((1-cos(d*x+c))*(-cot(
d*x+c)+csc(d*x+c)-1)*(csc(d*x+c)-cot(d*x+c)+1)*csc(d*x+c))^(1/2)+(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+
c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+1/2*I,1/2*
2^(1/2))*((1-cos(d*x+c))*(-cot(d*x+c)+csc(d*x+c)-1)*(csc(d*x+c)-cot(d*x+c)+1)*csc(d*x+c))^(1/2)+4*((1-cos(d*x+
c))^3*csc(d*x+c)^3+cot(d*x+c)-csc(d*x+c))^(1/2)*(-cot(d*x+c)+csc(d*x+c)))/(-e/(1-cos(d*x+c))*((1-cos(d*x+c))^2
*csc(d*x+c)-sin(d*x+c)))^(7/2)/(1-cos(d*x+c))^3*sin(d*x+c)^3/((1-cos(d*x+c))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)
*csc(d*x+c))^(1/2)/((1-cos(d*x+c))*(-cot(d*x+c)+csc(d*x+c)-1)*(csc(d*x+c)-cot(d*x+c)+1)*csc(d*x+c))^(1/2)/((1-
cos(d*x+c))^3*csc(d*x+c)^3+cot(d*x+c)-csc(d*x+c))^(1/2)

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(1/(e*cot(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(1/(e*cot(d*x+c))**(7/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(1/(e*cot(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\int { \frac {1}{\left (e \cot \left (d x + c\right )\right )^{\frac {7}{2}} {\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(e*cot(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((e*cot(d*x + c))^(7/2)*(a*sec(d*x + c) + a)^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(e \cot (c+d x))^{7/2} (a+a \sec (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2}{a^2\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{7/2}\,{\left (\cos \left (c+d\,x\right )+1\right )}^2} \,d x \]

[In]

int(1/((e*cot(c + d*x))^(7/2)*(a + a/cos(c + d*x))^2),x)

[Out]

int(cos(c + d*x)^2/(a^2*(e*cot(c + d*x))^(7/2)*(cos(c + d*x) + 1)^2), x)